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Abstract. The recent developments in superstring theory prompted the study of non-commutative struc-
tures in superspace. Considering bosonic and fermionic strings in a constant antisymmetric background
yields a non-vanishing commutator between the bosonic coordinates of the spacetime. Likewise, the presence
of constant Ramond–Ramond (RR) background leads to a non-vanishing anti-commutator for the Grass-
mann coordinates of the superspace. The non-vanishing commutation relation between bosonic coordinates
can also be derived using a particle moving in a magnetic background, we use superparticle to show how
the non-commutative structures emerge in superspace. The derivation is original and it is shown that only
a D0-brane in supergravity background reproduces the results obtained in string theory.

1 Introduction

During the last years, several new ideas emerged from
the marriage of non-commutative geometry to quantum
field theory and string theory. This is due to the discov-
ery that the spacetime generated by strings propagating on
a non-trivial background [1–5] is non-commutative. Fur-
thermore, string theory provides a meaningful way to con-
struct quantum field theories on non-commutative spaces.
Nevertheless the history of non-commutative geometry

and non-commutative structures of spacetime is definitely
longer, and it has its roots in quantum mechanics. In-
deed, it was first realized by Peierls using non-relativistic
quantum mechanics that the motion of a charged particle
in presence of non-trivial external magnetic fields can be
described by a free Hamiltonian assuming non-vanishing
commutation relations for the coordinates [6–8].
The simplest example of non-commutative space-

time [9, 10] is represented by the Heisenberg algebra of the
coordinates

[xm, xn] = i θmn (1)

where θmn is a constant antisymmetric tensor. Based on
this prototype, it has been developed an enormous amount
of new mathematics (which we are not going to review
here, and we refer to [11] for the most recent work on a wide
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class of non-commutative structures used in quantum field
theory and to their collection of references). The commu-
tation relations (1) can be recovered from the Hamiltonian
of a charged particle moving in a background of magnetic
field in the massless limit m→ 0. In that limit the particle
is confined in the lowest Landau level and this limit can
consistently be taken if some constraints on the momenta
are imposed. These are second-class constraints that have
to be treated using the Dirac brackets and this yields the
commutation relations (1). We briefly review this model
in Sect. 2. Then, we move to the supersymmetric version.
As is well-known, bosonic particles and bosonic string

theories are not sufficient to provide a complete description
of particle physics since they do not include fermionic de-
grees of freedom (except maybe only for some unphysical
ghost fields). Thus, we have to extend the bosonic theory
to a fermionic one. There are essentially two ways to do it:
adding some fermionic (anticommuting) worldline spinors
ψm (or worldsheet spinor in the case of superstrings), or
adding some fermionic target-space spinors θα [12, 13]. In
the former case supersymmetry on the worldsheet has to be
imposed for a consistent formulation of the model, whereas
for the latter case one has to impose a new gauge symme-
try, known as κ-symmetry [14], and this leads to supersym-
metry in the target space.We recall the basic ingredients of
this superparticle model in Sect. 3.
The quantization of superparticle is unfortunately very

problematic. The action is obtained from the bosonic one
by replacing the momentum Πm with its supersymmet-
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ric version Πm = ẋm+ θγmθ̇, and this leads to fermionic
constraints since the momentum pα is algebraically re-
lated to its conjugated variable θα. However, these con-
straints mix first-class constraints – which generate the
κ-symmetry – with second-class constraints and there is
no Lorentz-covariant way to separate the twos. Several
procedures were conceived to covariantly quantize these
models (see for example [15] and the references therein),
but most of them were nonpractical for computations and
were abandoned.1

On the other hand, the recent work by N. Berkovits [17]
provides a new technique to handle the quantization of
the superparticle and the superstring theory. In this new
framework, the action of the superparticle is replaced by
a free action and the physical states are constructed using
a BRST charge acting on the Hilbert space of free fields.
To be more precise, some of fields are not really free. In-
deed, to define a BRST chargeQ, one has to introduce new
degrees of freedom which play the role of ghosts here de-
noted by λα, and the nilpotency ofQ implies the quadratic
constraints

λαγmαβλ
β = 0 , (2)

where γmαβ are the Dirac matrices in the Majorana basis
and they are symmetric (in 10 dimensions). The spinors
satisfying (2) are known as pure spinors and the formal-
ism is now denoted as pure-spinor formulation. Here, we
consider only the pure spinor formulation of superparticle
and D0-branes and we refer to [18–20]. The possibility to
remove the constraint by adding new ghost fields has also
been considered [23–25], and in the specific case of super-
particle this was explored in [26]. However, for the purposes
of the present workwe will use the pure-spinor formulation,
whose basic ingredients will be reviewed in Sect. 3.2. Thus,
given a consistent way to quantize the superparticle we can
study the spectrum and the interactions.
At the massless (lowest) level string theory can be de-

scribed by an effective theory of supergravity and the spec-
trum consists of a bosonic sector with the graviton Gmn,
the NS-NS antisymmetric tensor Bmn , the dilaton φ and
a set of p-forms Fp

2, and a fermionic sector, a.k.a. NS-R or
R-NS sector, which contains the gravitinos Ψαm (see [27] for
a complete reference). The interest of superparticles in this
context is due to the fact that they can be viewed as trun-
cations of string theory to the massless sector. Therefore
these models are useful to deduce some general aspects of
string theory such as the spectrum of the massless modes,
their equations of motion, and some radiative corrections,
even if they can be used only a limited amount of ampli-
tude computations [28, 29].

1 It is important to mention that the superparticle can be
quantized using the light-cone gauge. In that case the spectrum
can be easily computed and tree level computations can be per-
formed [16]. However, there are several limitations to go beyond
this point because of lacking of Lorentz covariance.
2 In the case of N = 2 d=10 supergravity there are two pos-
sibilities: type IIA with F2, F4 and type IIB with F1, F3, F

+
5

(where the last form is selfdual).

To be more precise, the N = 1 d= 10 superparticle de-
scribe the multiplet ofN = 1 super-Yang–Mills theory. The
spectrum is characterized by the gluon (8 on-shell dofs)
and the gluino (8 fermionic dofs). It is formulated in the
superspace, but there are no auxiliary fields since the mul-
tiplet is on-shell. An N = 2 superparticle in 10 dimensions
describes the on-shell modes ofN = 2 supergravity, namely
64 bosonic and 64 fermionic degrees of freedom.
Whereas string theory can be consistently formulated

only in 10 dimensions, superparticle models can be for-
mulated also in lower dimensions.3 These models in lower
dimensions are easier to be used since the BRST con-
ditions for physical states does not put the theory on
shell and there is a wider range of consistent backgrounds
(vacua).
For what concerns the interactions we have to recall

that the superparticle as well as superstrings couple to
their own background. This means, for instance, that N =
2 d = 4 superparticle couples to N = 2 d= 4 supergravity.
In Sect. 3.3 this is described in detail. More important, we
have to underline that N = 2 d= 4 supergravity is charac-
terized by a graviton, two gravitinos and a RR field (known
as graviphoton in the literature) and the coupling with
N = 2 d= 4 superparticle is dictated by the BRST symme-
try. In addition, since for the d= 4 model the supergravity
does not need to be on-shell we can choose to set to zero all
background fields except the RR field.
We will show later how the RR fields lead to defor-

mations of anticommutative structure of superspace. But
before describing this result, it is worth to say few words
about superspace.
Let us remind the reader that superspace [30] is a pow-

erful technique to handle supersymetric theories, it is char-
acterized by the bosonic coordinates of manifold and a set
of Grassmann coordinates in the spinor rapresentation of
the Lorentz group. The superspace technique provides 1)
a very compact way to write the equations of motion for
the entire supersymmetric multiplet, 2) an extremely eco-
nomic way to compute Feynamn diagrams taking into ac-
count supersymmetry and, 3) a guideline to construct ef-
fective actions of supersymmetric theories. Finally, super-
space is naturally embedded in the pure spinor formulation
of string theory.
Now, we are finally in the position to study the super-

symmetric analog of noncommutative geometry of bosonic
theory (1). At this time, we study the deformation of the
anticommutator between fermionic coordinates θα [36, 37].
We have to recall that there are several studies in that
direction [38–40] where the second-class constrained were
used to show that there is a fundamental non-commutative
superspace in the quantization of superparticle. This is re-
viewed in this new formulation, for two reasons: 1) the pure
spinor quantization method is the only consistent way to
quantize superparticle without losing the super-Poincaré

3 Recently, it has been discovered that also superstrings can
be formulated in lower dimensions [31–34] and these models
can be viewed either as the uncompactified part of 10 dimen-
sional superstrings or as the non-Liouville sector of non-critical
superstrings [35].
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invariace; 2) in Sect. 4 and Sect. 4.1 the role of the RR fields
in the present analysis is shown.
However, only recently [41–43], using the pure spinor

formulation of string theory, the RR fields have been shown
to deform the anticommutation relations as follows

{θα, θβ}= α′2Fαβ , (3)

where Fαβ are the RR fields of N = 2 supergravity. It
is discussed the implications of these new anticommuta-
tor relations on quantum field theory in paper [44] and in
the several papers that followed it. The relation (3) can
also be derived in the context of quantum mechanics, or
better in the context of superparticle and this is the pur-
pose of this note. We show that in order to reproduce (3)
we have to use a peculiar type of superparticle known as
D0-brane. The pure spinor formulation is used again, and
it is shown that the quantization of the D0 brane leads to
non-commutativity in the superspace.
In the paper, we also discuss the perturbation theory

and the limit where the RR fields can be taken either very
weak or very strong. Some interesting results emerge from
this preliminary analysis and further developments will be
discussed elsewhere.

2 A particle in a magnetic field

We briefly review the formulation of a non-relativistic mas-
sive and charged particle in presence of magnetic field. We
will do it in a generic dimension and the position of the par-
ticle is described by its coordinates xm (withm= 1, . . . , d).
We introduce a constant background Bmn =−Bnm, thus,
the action reads (Ȧ= ∂τA)

S =

∫
dτ

(
Πmẋ

m−
1

2m
ΠmΠ

m+Bmnẋ
mxn
)
. (4)

The indices are raised and lowered with the flat metric
ηmn. The conjugate momentum Pm can be easily com-
puted and it gives Pm =Πm+Bmnx

n. Now, if we impose
the quantization rules [Pm, x

n] = iδ nm , we have that

[xm, xn] = 0 , [Πm, x
n] = iδ nm , [Πm,Πn] = iBmn . (5)

The other equations of motion are

mẋm =Πm , Π̇m+Bmnẋ
n = 0 . (6)

For this equations, it follows that Ṗm = 0. Therefore, in
order to take the limit m→ 0, we have to impose the
constraints

Πm ≈ 0 , (7)

which are second-class constraints. They have to be treated
using the Dirac brackets (see [46] for the definition of Dirac
brackets) and this leads to the non-commutation relations
for the coordinates

[xm, xn]D = (B
−1)mn , (8)

where the subscript denotes the Dirac brackets.
This model is interesting for three aspects: 1) it rep-

resents a simple solvable model of a particle moving in
a non-trivial background; 2) it gives the non-commutative
relations between the coordinates of the spacetime and,
finally, 3) it requires Dirac brackets for its quantization.
All these ingredients will be found again in the subsequent
sections.

3 Superparticles and the BRST symmetry

3.1 Action and κ-symmetry

We use Dirac basis for gamma matrices, and the space-
time is taken to be 4 dimensional. The field content is
represented by the bosonic coordinates xm where m =
0, . . . , 3, two anticommuting Dirac spinors θαL, θ

α
R with α=

1, . . . , 4 and their conjugate momenta Pm, pLα and pRα.
Since we are considering an N = 2 model, we have intro-
duced the notation L/R to distinguish between the two
flavours of the spinors. In the case of d = 4, there is no
distinction between type IIA/B since the theory is not
chiral in the present case. The Dirac matrices γmαβ are

the usual 4× 4 matrices and satisfy the Fierz identities
γm,(αβγ

m
γ)δ = 0.

Let us consider the superparticle action [12–14]

S =

∫
dτ
(
PmΠ

m−
e

2
PmP

m
)

(9)

in the first order formalism with

Πm = ẋ+
i

2
θLγ

mθ̇L+
i

2
θRγ

mθ̇R . (10)

This action is invariant under the κ-symmetry and under
the reparametrization of the worldline

δθαL = (�PκL)
α , δθαR = (�PκR)

α , δPm = 0

δxm = ζPm+
i

2

(
θLγ

m �PκL+ θRγ
m �PκR

)
,

(11)

δe= ζ̇+2 i
(
θ̇αLκLα+ θ̇

α
RκRα

)
.

where κL/R are the infinitesimal gauge parameters of κ-
symmetry and ζ is the parameter for diffeomorphisms.
From the action (9), we deduce the fermionic con-

straints

dLα = pLα+
i

2
Pm (γ

mθL)α ≈ 0 , (12)

dRα = pRα+
i

2
Pm (γ

mθR)α ≈ 0 ,

which satisfy

{dLα, dLβ}= Pmγ
m
αβ , {dRα, dRβ}= Pmγ

m
αβ , (13)

{dLα, dRβ}= 0 .
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The last equations are obtained using the canonical com-
mutation relations [Pm, x

n] = iη nm , {pLα, θ
α
L} = −iδ

β
α ,

{pRα, θ
β
R}=−iδ

β
α .

We have to notice the following facts: 1) there are first-
and second-class constraints generated by the operators
dLα and dRα, and they cannot be disentangled without
breaking Lorentz covariance, so the technique of Dirac
brackets cannot be used here, 2) the second-class con-
straints of the superparticle have been used in [38–40]
to derive non-(anti)commutation relations among the
fermionic coordinates of the superspace. However, since as
it stands the superparticle model cannot be quantized we
use the pure–spinor formulation.

3.2 Quantization

We briefly review the pure-spinor formulation of superpar-
ticle [18–20].
We introduce the commuting spinors λαL and λ

α
R, which

satisfy the pure spinor conditions

λLγ
mλL = 0 , λRγ

mλR = 0 , (14)

and their conjugate momenta wLα, wRα.
We define the BRST operators

QL = λ
α
LdLα , QR = λ

α
RdRα . (15)

They have the usual form ghost× constraint. Due to pure
spinor constraints (14), they are nilpotent up to the gauge
transformations of wLα, wRα with the local parameters ΛL
and ΛR given by

δwLα = ΛLm (γ
mλL)α , δwRα = ΛRm (γ

mλR)α .
(16)

These gauge transformations remove the degrees of free-
dom from the spinors wLα and wRα to match those of the
pure spinors λαL and λ

α
R. Following the usual prescription

of the BRST quantization rules, we can define the quantum
action as follows [47]

S0 =

∫
dτ

(
PmΠ

m−
1

2
PmP

m

)

+QL

∫
dτwLαθ̇

α
L−QR

∫
dτwRαθ̇

α
R . (17)

Even if it seems the usual BRST procedure, we have to
notice that the BRST operators QL and QR are nilpotent
only up to gauge transformations (16). This compensates
the fact that the Brink–Schwarz superparticle action (9)
is not invariant under the BRST transformations. In add-
ition, we can always add to the action BRST invariant
terms. The reparametrization is fixed by the gauge condi-
tion e = 1, and we have to add the corresponding ghosts∫
dτbċ. However, there is no procedure to get (17) from an
honest gauge fixing of the action (9) (a suggestion how this
might work is given in [47, 48]).

By exploiting the different contributions in (17), we
obtain

S0 =

∫
dτ
(
θ̇αL pLα+ θ̇

ᾱ
R pRᾱ+Pmẋ

m−
1

2
PmP

m

−wLαλ̇
α
L− λ̇

α
RwRα

)
, (18)

which is BRST invariant and invariant under the gauge
transformation (16) if the spinors λαL, λ

α
R are pure. The

action is also invariant under supersymmetry transform-
ations generated by Qε = ε

α
LqLα+ ε

α
R qRα where

qLα = pLα−
i

2
Pm (γ

mθL)α , (19)

qRα = pRα−
i

2
Pm (γ

mθR)α ,

which anticommute with the BRST operatorsQL andQR.
The physical states are identified with the BRST co-

homology at ghost number 1 and the cohomology is com-
puted by the following equations

QL|ψ >= 0 , QR|ψ >= 0 , (20)

|ψ > �=QL|ΩL >+QR|ΩR > ,

withQR|ΩL >=QL|ΩR >= 0. The physical state |ψ > has
ghost number one and the parameters of the gauge trans-
formations |ΩL/R > have ghost number zero. The states
|ψ > are obtained by acting with normal-ordered combina-
tions of operators xm, θα, . . . .... on the vacuum |0>. The
complete analysis of (20) in d=10 N = 2 case has been
given in [49, 50], and based on those results it can be shown
that the solution of these equations yields the off-shell mul-
tiplet of N = 2 d= 4 supergravity.

3.3 Coupling the superparticle to the background

As illustrated in [20] the superparticle N = 2 can be
coupled to a N = 2 supergravity background. The defor-
mation of the action S+

∫
dτV has to be BRST invariant

in order to define gauge invariant correlation functions. For
constant backgrounds, the BRST invariant action is given
by

SR = S0+

∫
dτ
(
PmgmnP

n+BmnL
mn+ΨαLmqLαP

m

+ qRᾱP
mΨαLm+ i qLαF

αβ qRβ

)
, (21)

where gmn is the usual metric deformation,Bmn is the NS-
NS two form, ΨαLm and Ψ

α
Rm are the gravitinos and F

αβ are
the R-R field strengths. The fields Pm, qLα, qRᾱ and

Lmn = P [mxn]+
1

2
pLγ

mnθL+
1

2
pRγ

mnθR

+
1

2
wLγ

mnλL+
1

2
wRγ

mnθR , (22)

are BRST invariant. As a consequence, the action (21) is
invariant if the backgrounds are constant. Given that, we
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can obtain the action (21) by an equation similar to (17)
(see [20, 47]). In the following we will set all background
fields to zero except for the RR graviphoton and the metric
Gmn and we will take them to be constant.
The advantage of working in 4 dimensions is due to

weaker constraints to which the background has to satisfy
and the absence of backreaction. Indeed, as is been shown
in [32], in d = 4 the BRST cohomology implies only that
the background fields belong to off-shell supermultiplets
and no equations of motion are necessary (see also [21]).
In the case of closed superstrings [22], it can be shown
that the BRST conditions implies only some kinematical
restrictions on the background. For that reason, one can
choose suitable background enforcing the absence of the
backreaction.

4 RR fields and non-commutative superspace:
Act I

Setting the background fieldsBmn and the gravitinos Ψ
α
Lm,

Ψ ᾱRm to zero and we assume that F
αβ = F βα, we obtain the

new action

SR =

∫
dτ
[
θ̇αLpLα+ θ̇

α
RpRα

+ i
(
pLα−

i

2
Pm (γ

mθL)α

)
Fαβ

×
(
pRβ−

i

2
Pm (γ

mθR)β

)]

+

∫
dτ
[
Pmẋ

m−
1

2
GmnP

mPn−wLαλ̇
α
L− λ̇

α
RwRα

]
,

(23)

where Gmn = ηmn+gmn. The presence of RR fields breaks
the supersymmetry. The amount of supersymmetry pre-
served in this background is given by the equations

PmF
αβγmβγε

γ
R = 0 , PmF

αβγmαγε
γ
L = 0 , (24)

which are the usual Killing equations for spinors if one re-
defines the supersymmetry parameters with ε′L = �PεL and
ε′R = �PεR, for off-shell momentum Pm. No contribution is
added to the ghost action and this simplifies the analysis.
From the action (23) we can derive the equations of mo-

tion for θαL and θ
α
R

−θ̇αL+ i F
αβpRβ̄+

1

2
(F �P )αβθ

β
R = 0 , (25)

−θ̇αR− iF
βαpLβ−

1

2
(F �P ) αβ θ

β
L = 0 ,

which can be solved in terms of pLα and pRᾱ. We assume
for the time being that Fαβ is an invertible matrix. On the
contrary, if F is not invertible on the spinor space, one can
decompose any spinor into a part belonging to ker(F ) and
to ker(F )⊥. The spinors belonging to the kernel of F do
not enter the coupling term in (23) and therefore can be
treated separately, in that case there is a residual super-
symmetry.

Notice that the RR field Fαβ plays the role of the mass
in the case of non-relativistic charged particle in Sect. 2.
Therefore, we are interested in studying the limit ||F || →
∞, where || · || means a measure of the intensity of the RR
field strength.4 Moreover, the RR fields does not seem to
play the role of the magnetic field Bmn of Sect. 2. Indeed,
the anticommutation relations among the fermionic con-
straints dα L and dα R do not contain the field F

αβ in con-
trast to the corresponding constraints Πm of the bosonic
case.
To exploit the analogy between the mass term of (4)

and the RR-dependent terms of (23), we further manip-
ulate the action. Substituting (25) in the action (23), one
obtains

SR =

∫
dτ
[
iθ̇αLF

−1
αβ θ̇

β
R+
i

2
θL �P θ̇L+

i

2
θ̇R �PθR

]

+

∫
dτ
[
Pmẋm−

1

2
PmPm−wLαλ̇

α
L− λ̇

α
RwRα

]
.

(26)

The first term is a kinetic term for the fermions which
is quadratic in the derivatives. This is an usual term for
spinors, but it is always present in string models in super-
space. The second and the third term in the action resem-
ble the spinorial part of the Brink–Schwarz action.
This action suggests that this is a superparticle moving

on a supergroup manifold with coordinates xm, θαL and θ
ᾱ
R.

Denoting byQLα,QRᾱ and by Pm the abstract generators
of the algebra {QLα,QLβ}=−γmαβPm and {QRα,QRβ}=
−γmαβPm, we find the following MC forms

g−1dg = (dxm+dθLγ
mθL+dθRγ

mθR)Pm
+dθαLQLα+dθ

α
RQRα , (27)

and the metric for the algebra have the following non-
vanishing entries

(Pm,Pn) = gmn , (QRα,QLβ) = F
−1
αβ . (28)

Notice that the MC forms are not supersymmetric invari-
ant since the supersymmetry is broken by the presence of
the RR fields. Eliminating Pm from the action (26) and
using the metric given in (28), the action (26) can be writ-
ten as

SR =

∫
dτ
[
(g−1ġ, g−1ġ)−wLαλ̇

α
L− λ̇

ᾱ
RwRᾱ

]
. (29)

This is similar to the result found in [52], where the authors
showed that in the case of AdS3×S3, one finds a sigma
model on a supergroup. It is interesting that the same situ-
ation is reproduced in the present context (it should also be
possible to do it for string theory in 10 dimension with con-
stant RR fluxes as studied in [41, 53, 54], but nobody found
a convenient set of variables yet).

4 The relation between lowest Landau levels and RR fields is
explored in [51]
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After the conjugated momenta pα L/R are removed, the
equations of motion for the spinors read

θ̈αL+
1

2
Fαβ̄ �Pβ̄γ̄ θ̇

γ̄
R = 0 , (30)

θ̈ᾱR−
1

2
θ̇γL �PγβF

βᾱ = 0 .

Since on-shell we have Ṗm = 0 and since we choose con-
stant RR field strengths, we can integrate once the above
equations to get

θ̇αL+
1

2
Fαβ̄ �Pβ̄γ̄θ

γ̄
R = C

α
L , (31)

θ̇ᾱR−
1

2
F ᾱβ �Pβγθ

γ
L = C

ᾱ
R .

whereCL/R are integration constants to be fixed by bound-
ary conditions (in order to avoid any new constant non-
covariant quantity we choose to set them to zero). Insert-
ing (31) into (30), we arrive at the decoupled equations for
θαL and θ

ᾱ
R

θ̈αL−
1

4
(F �PFT �P )αβθ

β
L = 0 , (32)

θ̈ᾱR−
1

4
θβ̄R(�PF

T �PF )ᾱβ̄ = 0 .

These equations show that the RR fields play the role of
a mass term for the fundamental fields θα and the matrix
(F �PFT �P ) is constant. This is a well-known phenomena in
pp-waves background [55, 56]: the spectrum of worldsheet
theory becomes massive. In addition, we can see that the
theory is not supersymmetric: the bosonic partner is not
massive.5

Nevertheless, if the matrix (F �PFT �P ) has some zero
eigenvalues, along those directions we recover a partial
supersymmetry.
Let us study two interesting limits: ||F || → 0 and

||F || →∞. The first limit is the regime where perturbation
theory can be used to perform worldline computations.
The second limit is certainly more interesting due to the
fact that very little is know about string theory in the pres-
ence of strong background fields.
In the limit ||F || →∞, where the norm || · || is properly

defined, the first term can be neglected, and the action is
invariant under a new κ-symmetry (notice that we have re-
placed the classical κ-symmetry of the action (9) with the
BRST symmetry given in (15))

δkx
m = θLγ

m �PκL+ θRγ
m �PκR+ ζP

m , (33)

δkθ
α
L =−(�Pκ)

α
L+ ζθ̇

α
L , δkθ

ᾱ
R =−(�Pκ)

ᾱ
R+ ζθ̇

ᾱ
R ,

where the diffeomorphism ghost ζ compensates the gauge
choice e= 1, and it is ζ =−

∫ τ
dτ ′(θ̇αLκLα+ θ̇

ᾱ
RκRᾱ).

5 It has to be recalled that the mass parameter in a curved
space does not carefully measure the masslessness of the field.
The best way to reveal a supersymmetry breaking is to analyze
the Killing spinor equations in a curved background.

Notice also that from (25) it turns out that to take
properly the limit of ||F || → ∞ one has to impose the
constraints

qα L ≈ 0 , qα R ≈ 0 . (34)

These constraints generate the κ-symmetry (33) with the
opposite sign is front of the transformation rules for the
spinors. In addition, they include also second-class con-
straints. The theory is quantized and therefore we can use
the technique discussed in [13, 38, 39]. This yields the same
non-(anti) commutative superspace which is a consequence
of the structure of second-class constraints of qα L/R, and
it does not depend upon the RR field. Applying the Dirac
procedure, one finds that{

θαR, θ
β
R

}
D
∼ γαβm x

m ,
{
θαL, θ

β
L

}
D
∼ γαβm x

m ,

(35){
θαL, θ

β
R

}
D
= 0 .

This result for the superparticle is quite different from the
result of superstrings [41, 42, 44] given in (3); for the super-
particle, the anticommutation relations of the Grassmann
coordinates (35) are related to the bosonic coordinates and
not theRRfield.This is due to the fact thatwehave only one
set of free parameters, namely Fαβ , which have to be inter-
preted as a mass matrix and not as a “magnetic field”.
Moreover, for highly curved space one has to take into

account the radiative corrections to the action (26) before
taking the limit ||F || →∞. In fact, as we shall show be-
low, at one loop there are new pieces generated by radiative
correction at one-loop in the worldline.
On the other hand, in the limit ||F || → 0, the first term

becomes dominant over the other fermionic terms (for the
bosonic terms in (26), one can also add a background met-
ric − 12g

mnPmPn and therefore they cannot be neglected)
and the action (26) with backgroundmetric gmn reduces to

SR =

∫
dτ

×
[
− θ̇ᾱRF

−1
ᾱβ θ̇

β
L+
1

2
gmnẋ

nẋm+wLαλ̇
α
L+ λ̇

ᾱ
RwRᾱ

]
.

(36)

We conclude that we can use the RR background to set
up a perturbation theory around weak RR backgrounds.
Namely, we can consider the action (36) as the quadratic
part of the action from which the propagators can be com-
puted, and the rest has to be considered as a perturbation.

4.1 Radiative corrections

It is easy to compute the radiative corrections to the
bosonic inverse propagator 〈xm(τ)xn(0)〉. By computing
the free propagators of xm and the off-diagonal propagator
of θL and θR, one can obtain the one loop contribution

Gmn(τ) =−
1

16
γmαβF

βγ̄γnγ̄δ̄F
αδ̄

∫ 1
0

dt|τ − t| |t| (37)

=−
1

16
Tr(γmFγnF )P(τ) ,
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where P(τ) is a polynomial of third order in τ . In the same
way the one-loop corrections to the off-diagonal inverse

propagator 〈θαLθ
β̄
R〉

Gαβ̄(τ) =−
1

16
γmαδF

δγ̄γnγ̄β̄gmnP(τ) . (38)

Form this computation, we see how the presence of RR

backgrounds in the 〈θαLθ
β̄
R〉 leads to modifications in all

the couplings, and therefore the analysis at string coup-
ling ||F || →∞ cannot be performed without taking into
account the radiative corrections. It may be possible to
re-sum all the contributions. Notice for example that the
spinors θL and θR appear only quadratically in (36), there-
fore one can integrate over those fields obtaining the follow-
ing determinant

det

(
i
2 �Pαβ∂τ

1
2F
−1
αβ̄
∂2τ

1
2F
−1
ᾱβ ∂

2
τ

i
2 �Pᾱβ̄∂τ

)
. (39)

The next step will be to integrate over the field Pm. We will
not pursue this analysis here and we refer to a subsequent
publication.

5 D0 branes and the BRST symmetry

Since we have seen that the introduction of the RR fields in
the case ofN = 2 d= 4 (or d=10) superparticle does not re-
ally help for deriving the anticommutation relation (3) for
the Grassmann coordinates, we need to use a different type
of superparticle to do it.
As is known, in string theory there are solitonic degrees

of freedom which are known as Dp-branes [27]. A given
Dp-brane has a worldvolume which has p+1 dimensions.
They are characterized by the coupling to the RR fields of
the superstrings, and they can be described by a low energy
effective action which is the sum of a Born–Infeld action
and a Wess–Zumino term. Among the Dp-branes, we can
consider theD0-brane which is a particle (the worldvolume
is 1-dimensional) described by the effective action

S =

∫
dτ
(
PmΠ

m−
e

2
PmP

m
)
+

∫
dτfαβθ

α
Lθ̇
β
R (40)

in the first order formalism with

Πm = ẋ+
i

2
θLγ

mθ̇L+
i

2
θRγ

mθ̇R . (41)

and fαβ is constant. The first term is the Born–Infeld term
written in the first order formalism. The second term is
a Wess–Zumino term and the coefficient fαβ is related to
the brane tension [57]. Indeed it can be viewed as the mass
of the D0-brane
The action is invariant under κ-symmetry which yields

the supersymmetry of theD0-brane and it can be quantized
using the BRST technique discussed above in Sect. 3.2.
An objection to this might be: theD0-brane is not a funda-
mental degree of freedom and there is no need of quantizing

it! However it is shown in [45] that the BRST based on pure
spinor formulation replaces the κ-symmetry and provides
a guideline how to coupled the D0-brane to a supergravity
background as in the case of the N = 2 superparticle.
In analogywith (19), we derive the supersymmetry gen-

erators qα,L and qα,R for the D0-brane.

qLα = pLα−
i

2
Pm (γ

mθL)α+fαβθ
β
R , (42)

qRα = pRα−
i

2
Pm (γ

mθR)α+fαβθ
α
L .

They couple to the RR field of the supergravity back-
ground and the supersymmetry is broken because of the
presence of RR fields, or equivalently to the presence of
D0-branes.

6 RR fields and non-commutative superspace:
Act II

Finally, we can couple the D0-brane to RR field of the su-
pergravity background and this introduces a new term of
the form ∫

dτFαβqα LqβR , (43)

such as in the case of a superparticle coupled to RR fields.
To simplify as much as possible the analysis, we can set the
momentum of the particle to zero and we find that in the
limit of ||F || →∞, we need the constraints

qα L ≈ 0 , qα R ≈ 0 . (44)

where qα L and qα R are given by (42) and they depend
on the RR field fαβ generated by the D0-brane. Apply-
ing the Dirac procedure and using the canonical brack-
ets [pα L/R, θ

β
L/R] = iδ

β
α , we end up with the commutation

relations

{θαL, θ
β
R}D = (f

−1)αβ , (45)

which finally gives the non-(anti)commutation relations
between the fermionic coordinates.
To conclude, we have shown that the coupling of the RR

fields and the Wess–Zumino term, in the case of superpar-
ticle and D0-brane, are fundamental to generate a defor-
mation of anti-commutation relations among Grassmann
coordinates of the superspace. It is worth pointing out that
the RR fields of the supergravity background cannot genx-
erate the wanted commutation relations, but it replaces the
role of the mass as in the case of the non-relativistic par-
ticle moving in a magnetic field. Furthermore, it is shown
that the brane tension together with a supergravity back-
ground yields the wanted commutation relations (3) ob-
tained also in string theory. The role of the mass and and
of the RR fields is inverted: in the case of massive bosonic
charge particle, we take the limitm→ 0 and we derive (1))
deformed byBmn, in the case of superparticles, we take the
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limit ||F || →∞ and we derive (3) deformed by the brane
tension f .
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